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Abstract

Modeling the plastic deformation and texture evolution in halite is challenging due to its high plastic anisotropy at the single

crystal level and to the influence this exerts on the heterogeneity of deformation over halite polycrystals. Three different

assumptions for averaging the single crystal responses over the polycrystal were used: a Taylor hypothesis, a self-consistent

viscoplastic model, and a finite element methodology. The three modeling approaches employ the same single crystal relations,

but construct the polycrystal response differently. The results are compared with experimental data for extension at two

temperatures: 20 and 100 jC. These comparisons provide new insights of how the interplay of compatibility and local

equilibrium affects the overall plastic behavior and the texture development in highly anisotropic polycrystalline materials.

Neither formulation is able to completely simulate the texture development of halite polycrystals while, at the same time, giving

sound predictions of microstructural evolution. Results obtained using the finite element methodology are promising, although

they point to the need for greater resolution of the individual crystals to capture the full impact of deformation heterogeneities.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction and motivation

Halite (NaCl) occurs naturally as a single phase

mineral with cubic crystal structure. Halite exhibits

high ductility, as evidenced by tectonic formations such

as salt domes in nature (e.g. Sannemann, 1968; Trush-

eim, 1957, 1960), and by deformation experiments
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(e.g. Heard, 1972; Kern and Braun, 1973; Skrotzki

and Welch, 1983; Franssen and Spiers, 1990; Carter et

al., 1993; Skrotzki et al., 1995). Associated with the

large strain deformations are pronounced changes in

crystallographic texture. Also observed in halite is a

strong degree of plastic anisotropy at single crystal

level (Carter and Heard, 1970; Skrotzki and Haasen,

1981; Guillope and Poirier, 1979), a behavior that is

attributed to the sparseness of its slip systems. With

relatively few slip systems available, the yield strength
d.
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is highly directional. Consequently, it is unusual for

crystals within a polycrystal to experience closely

similar deformations. This combination of high ductil-

ity, that enables large strains, and strong anisotropy,

that encourages high variability of strain from crystal to

crystal, makes the simulation of texture evolution in

halite particularly challenging.

Taylor (1938) suggested that in modeling plastic

deformations, straining could be partitioned equally

among crystals undergoing a macroscopically uniform

deformation. This ‘‘full constraints’’ (FC) hypothesis

has been used extensively for single-phase polycrys-

tals comprised of crystals with cubic symmetry and

having many slip systems of comparable strength

available (e.g. Van Houtte, 1982; Kocks et al., 1998).

For this approach even to be viable, the individual

crystals must each be able to accommodate an arbitrary

deformation, requiring five independent slip systems.

While the Taylor assumption is reasonable for materi-

als comprised of crystals with many slip systems of

comparable strength, using it in other situations can

lead to prediction of excessively high stresses, incor-

rect texture components, or both. The modeling of

halite is consistent with these trends. If only the

primary (weakest) families of slip systems are allowed,

there are too few to permit arbitrary deformations. If

secondary (much stronger) slips are made available

and the deformation over an aggregate is required to be

uniform, the computed stress levels are too high and

the predicted textures are in error (Siemes, 1974).

In contrast to the Taylor hypothesis, all crystals in a

polycrystal can be required to exhibit identical stress

given that their behavior is rate dependent at the slip

system level. This is a variant of the original Sachs

assumption for rate independent behavior in which the

stresses in the crystals throughout an aggregate share a

common direction. The equal stress hypothesis is

most effective for polycrystals comprised of crystals

with fewer than the five independent slip systems. It

has also been used successfully in modeling the

mechanical response of lower symmetry crystals that

possess adequate numbers of independent slip sys-

tems, but whose slip systems display widely disparate

strengths. Halite has been modeled with this assump-

tion, with limited success. The principal drawback is

that deformation often is concentrated too highly in a

small number of crystals, leading to inaccurate texture

predictions.
Several other approaches have been developed for

modeling the heterogeneous deformation of highly

anisotropic polycrystals. For example, Molinari et al.

(1987) developed the viscoplastic self-consistent

(VPSC) formulation for large strain deformation in

which each grain was regarded as an inclusion embed-

ded in a viscoplastic homogeneous equivalent medium

(HEM) whose properties coincide with the average

properties of the polycrystal. For face-centered cubic

metals with a single family of {111}h110i slip sys-

tems, the VPSC theory predicts textures that are

similar those given by the Taylor hypothesis. The

VPSC model also has been applied to halite (Wenk

et al., 1989). In this case, the Taylor theory and VPSC

predict entirely different behaviors. The activities of

slip systems differ substantially, which, in turn, result

in different predicted textures. This difference is evi-

dent in Fig. 1, which compares Taylor and VPSC

simulations in the form of inverse pole figures, for

the case of 50% extension, uniform initial texture, and

no strain-hardening.

The tangent VPSC formulation of Molinari et al.

(1987) assumed the HEM to be isotropic. A more

general formulation with an anisotropic HEM behav-

ior was introduced by Lebensohn and Tomé (1993,

1994). This fully anisotropic tangent VPSC has been

successfully applied to the prediction of plastic aniso-

tropy and texture development of various metals (e.g.

Tomé and Canova, 1998) and geologic materials (e.g.

Wenk, 1999). In most cases, the VPSC simulations

improves earlier predictions obtained with the Taylor

model, giving texture components which are observed

but not computed using the latter model, as well as

providing better overall quantitative agreement with

experiments. However, in the case of halite the VPSC

and the Taylor texture predictions show essentially

opposite texture trends. This extreme discrepancy

between the two models has never been adequately

explained.

In recent years, the self-consistent models for non-

linear polycrystals have been subjected to several

extensions and reinterpretations. In particular, it was

shown that due to its linearization scheme, the tangent

VPSC formulation, as originally conceived, ap-

proaches the rate-insensitive Sachs limit (Tomé and

Canova, 1998). To overcome this limitation, the rate-

sensitive self-consistent approach has been extended to

consider an ad-hoc linearization of the HEM (Masson



Fig. 1. Inverse pole figures of halite deformed 50% in extension, starting from random texture and with no strain hardening, predicted with (a)

Taylor full constraint and (b) VPSC models (Wenk et al., 1989).
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et al., 2000). In the present work, however, the model-

ing results required for comparison with the corre-

sponding halite experiments remain largely within the

range of validity of the tangent VPSC model. Accord-

ing to Ponte Castañeda (1991, 1996) the concept of an

individual grain deforming homogeneously embedded

in a HEM can be reinterpreted as the interaction

between a phase of a perfectly disordered polycrystal,

consisting of grains of the same orientation but differ-

ent (i.e. random) neighborhoods, with the effective me-

dium. In this case, the self-consistent model allows the

calculation of statistical quantities associated with the

deformation of a polycrystal with such random micro-

structure, particularly the mean value of the deforma-

tion in the phase, i.e. an average over grains with the

same orientation and all possible environments.

Another modeling approach is to employ finite

element methodologies to compute deformations of

an aggregate of crystals. One example is the hybrid

element polycrystal (HEP) approach reported by Beau-

doin et al. (1995). Using the hybrid element approach,

every grain can be discretized with a single element

(Sarma and Dawson, 1996) or with many elements

(Mika and Dawson, 1999). The boundary value prob-

lem resulting from the application of homogeneous

macroscopic boundary conditions is solved to obtain

the deformation of individual crystals. The HEP model

has been applied to a number of one and two-phase

metal alloys (aluminum, steel and titanium systems) to

predict texture development and intracrystalline misor-

ientations (Barton and Dawson, 2001).
In this paper, we reexamine the issue of predicting

the evolution of texture in halite by comparing the

results from Taylor, VPSC and HEP simulations. To

establish a direct orientation-to-orientation comparison

we use here the 1-site VPSC (Lebensohn and Tomé,

1993) and the one-element-per-grain HEP (Beaudoin et

al., 1995). Newly obtained experimental data serve as a

reference for comparison. Precise knowledge of the

experimental conditions facilitates imposing the cor-

rect initial texture and boundary conditions in the

simulations and assures consistency between measured

stress–strain behavior and final textures. The intent of

comparisons is to expose the influence of the deforma-

tion heterogeneity on the evolution of texture, and, in

doing so, explain the reason for the wide discrepancy in

the prior Taylor and VPSC predictions. In Section 2 we

present new experimental data for extensional defor-

mation of halite. In Section 3 we review and compare

the assumptions underlying the Taylor, VPSC and HEP

models, and report some details of the implementation

of a HEP calculation for halite. In Section 4 we com-

pare the local strain distribution, the stress–strain re-

sponse and the texture development predicted with

Taylor, VPSC and HEP models. Sections 5 and 6 con-

tain discussion of results and conclusions, respectively.
2. Experiments

Texture evolution in halite has been examined by a

number of investigators. Kern and Braun (1973)
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deformed fine-grained halite in axial compression,

plane strain and axial extension in a triaxial apparatus

similar to the one described below. In all cases,

substantial texture development was observed and

reported as experimental pole figures. At the time

quantitative texture analysis was not yet routinely

available. Skrotzki and Welch (1983) extruded rock

salt and other halogen compounds at a range of

temperature and strain conditions, producing strong

textures at very large strains as revealed by inverse

pole figures. The extrusion textures display (111) and

(100) fibers. At large strains, deformation was accom-

panied by dynamic recrystallization. Franssen and

Spiers (1990) (and corrections by Franssen, 1996

and Skrotzki et al., 1996) deformed halite in simple

shear and observed an asymmetric texture pattern

similar to torsion textures in fcc metals (Canova et

al., 1984; Hughes et al., 2000). Skrotzki et al. (1995,

1996) deformed halite in plane strain, pure shear and

observed similar texture patterns as those described by

Kern and Braun (1973). A complicating aspect for

interpreting these experimental data is that the tex-

tural, mechanical and microstructural description is

incomplete. Therefore, it seemed worthwhile to per-

form a series of new experiments, with well-defined

starting material and a fairly complete characterization

of the experimental conditions and the deformed

material.

2.1. Experimental settings

Experiments were performed in a triaxial multi-

anvil apparatus, obtaining quantitative mechanical

data (stress–strain behavior). The microstructure of

the samples was analyzed by optical microscopy on

polished and etched surfaces. Pole figures and inverse

pole figures shown in this paper and used for texture

representation were recalculated from the orientation

distribution function (ODF), based on three experi-

mental, incomplete pole figures, measured by X-ray

diffraction in reflection geometry, applying necessary

defocusing and background corrections. The textures

of some samples were additionally measured by SEM-

EBSP. With the EBSP method, a flat sample surface

was scanned in the automatic mode and the orientation

distribution was reconstructed from about 1000 indi-

vidual orientation measurements. Processing of texture

data was done with BEARTEX (Wenk et al., 1998).
In this study, polycrystalline samples were pre-

pared from granular rock salt with grain sizes < 0.4

mm by compaction in a steel matrix for several hours

at a temperature of 120 jC and a confining pressure of

200 MPa to a nearly cubic shape with 5 cm edges. The

residual porosity over the aggregate varied between

2.3% and 0.7%. Prior to loading, some of the samples

were annealed at 650 jC for about 24 h. For compar-

ison, typical microstructures of the compacted and

annealed samples are shown in Fig. 2a and c, indicat-

ing that recrystallization did occur during annealing of

the synthetic aggregates. The average grain size

increased slightly during the annealing process, and

the grains in the annealed samples were more uniform

and did exhibit a more polygonal microstructure, with

many triple junctions.

It was first established that the texture of the

starting material was uniform (no preferred orienta-

tion) and that no texture was introduced during

compaction. This is particularly important, because

at the moderate strains reached in the experiments, the

deformation textures were still quite weak. Fig. 3

shows (100) pole figures (incomplete and recalculated

from the ODF) of the compacted and annealed sam-

ples. The observed intensity peaks that reach values

higher than seven multiples of uniform (random)

distribution (mrd) are essentially due to limited sta-

tistics. Therefore these fluctuations are not relevant, as

far as the uniformity of the texture is concerned. Since

single crystals of halite have a cubic cleavage, sample

compaction could have conceivably introduced an

artificial cube texture, but this was not observed.

The deformation experiments were carried out in

extension mode (r1 < r2 = r3) (note that the major

strain is compressive under these conditions), in a

triaxial (multi-anvil) pressure apparatus (for details,

see Kern, 1979). Graphite was sprayed on the end

faces of the sample cube/prisms to minimize friction.

Starting from hydrostatic conditions (r1 = r2 = r3 = 50
MPa) a deviatoric coaxial stress was obtained by

increasing the principal stresses stresses r2 and r3
continuously until a strain rate of about 10� 5/s was

achieved. Afterwards the experiments were continued

at constant strain rate. Strain (e1, e2, e3) was deter-

mined from the measurement of the piston displace-

ments, using two sensors on each prism side.

Estimated precision of the displacement is about

10� 2 mm. The applied principal stresses r1, r2, r3



Fig. 2. Microstructures of (a,c) starting material (arrows indicate compaction direction) and (b,d) specimens deformed at room temperature

(arrows indicate extension direction). Top: compacted only. Bottom: compacted and annealed.
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were calculated from the measured forces and auto-

matically corrected for deformation-related changes

of the cross sections. The forces (loads) applied to the

three pairs of faces with the three pairs of pistons

were calibrated by means of a load cell. The esti-

mated precision of the principal stresses is better than

2 MPa.

Three experiments were conducted under the fol-

lowing conditions: (a) at room temperature (20 jC),
starting from the compacted state (LTC experiment);

(b) at room temperature, starting from the annealed

state (LTA experiment); and, (c) at higher temperature

(100 jC), starting from the annealed state (HTA

experiment). Experimental conditions and strain val-

ues for the specimens are listed in Table 1.
2.2. Stress–strain behavior

The stress–strain curves presented in Fig. 4

illustrate significant strain hardening in the samples

deformed at room temperature. The maximal differ-

ential stress (rmax = r3� r1) is about 66 MPa in the

LTC sample and about 60 MPa in the LTA at final

extensional strains of � 15.5% and � 16.6%,

respectively. The stress–strain curves for the HTA

sample under the same loading conditions exhibit

only moderate hardening and finally weak soften-

ing. The maximal differential stress is considerably

lower than the corresponding room temperature

experiment (LTA), reaching a value of about 36

MPa. The pronounced weakening is partially due to



Fig. 3. (200) pole figures of the initial material. Top: Incomplete pole figures measured by X-ray diffraction. Bottom: Pole figures recalculated

from the orientation distribution function. Equal area projection, linear contours.
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reduced work-hardening (Carter and Heard, 1970;

Skrotzki and Haasen, 1981), to texture develop-

ment, and, conceivably, to effects of partial dynamic

recrystallization.

2.3. Morphologic textures

Cylinders having a 20-mm diameter were cored

from the roughly 5 cm cube-shaped deformed samples,

parallel to the extension axes. A thick polished section

cut normal to the extension (cylinder) axis was pre-

pared from the central part for measurement of the

texture. For microstructural investigations, a second

thick polished section was cut parallel to the extension

axis from an adjacent part of the specimen. For the

microstructural analysis the polished surfaces were
Table 1

Deformation conditions for the three experiments on halite polycrystals

Test Starting material Porosity (%) T (jC)

LTC compacted 0.7 20

LTA compacted + annealed 2.3 20

HTA compacted + annealed 0.74 100
carefully etched, ensuring a better visualization of

the grain shapes. The grain contours were manually

hand-drawn, digitised and ellipses were fitted auto-

matically to those contours. Fig. 5 shows the quanti-

fied results of the shape fabrics parallel to the direction

of deformation (compaction and extension, respec-

tively) for the investigated samples in the initial and

deformed states, respectively. The preferred 2D-orien-

tation and the grain diameters are represented as rose

diagrams (left) and solid bar histograms (center and

right). The rose diagrams on the left display the

frequency of long grain axes relative to the extension

direction. The histograms in the center represent the

percentage of area frequency corresponding to the

lengths of the long axis of the grains and, those on

the right, to the aspect ratio (length/width) of the
r1 (MPa) rmax (MPa) Linear strain (%)

e1 e2 e3

50 66.1 � 15.5 11.1 11.0

50 60.2 � 16.6 12.3 12.0

50 34.2 � 18.0 13.2 13.4



Fig. 4. Stress– strain curves of three halite specimens: room temperature (20 jC) starting from compacted material (LTC), room temperature,

compacted + annealed (LTA) and high temperature, compacted + annealed (HTA), deformed in extension mode.
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grains. The starting material shows only a weak

orientation of the long axis perpendicular to the

quasi-uniaxial compaction direction. Importantly, due

to the annealing procedure, the average grain sizes

increases from about 0.1 mm in the hot-pressed

material to about 0.2 mm in the annealed specimen.

Further, the grain shape distribution is more uniform

for the annealed specimen. Polished and etched thin

sections of the material deformed in extension reveal

densely developed dislocation microstructures in

heterogeneous domains, such as slip band patterns.

Grain shapes tend to become elongated (ellipsoidal)

in the deformed samples and a marked increase in

the frequency of grains with their long axes ori-

ented parallel to the extension direction is apparent.

The distribution of grain size is somewhat broader

in the deformed material in comparison to the initial

distribution.

2.4. Crystallographic textures

Fig. 6 shows three inverse pole figures of the

extension direction of the deformed samples (LTC,

LTA and HTA) measured by X-rays and a fourth one

measured by EBSP for the HTA sample. All inverse
pole figures display a bimodal distribution with tex-

ture components at (001) and (111). They differ,

however, in the absolute intensity and in the relative

intensity of the components.

Comparing the results for all three deformed sam-

ples we note that:

(a) (100) and (111) texture components appear at both

20 and 100 jC (both for the compacted and the

annealed samples).

(b) At room temperature, the (111) component is more

intense in the compacted sample (>4 mrd) than in

the annealed sample (>2 mrd).

(c) Although the X-ray texture patterns are similar at

20 and 100 jC for the initially annealed samples,

they are slightly stronger for 20 jC than for 100

jC even though the 100 jC samples were

subjected to a larger strain (see Table 1).

(d) At 100 jC, the EBSP inverse pole figure shows a

slightly weaker texture than the X-ray measure-

ment. In addition, in the EBSP texture the (100)

component dominates over the (111) component,

while for the X-ray textures, the reverse is true. We

believe that the X-ray results are more reliable

because, with automated EBSP operation, some



Fig. 5. Statistical information about shape preferred orientation (left side), grain size distribution (center) and grain shape distribution (right side)

in initial and deformed halite aggregates. Frequency distributions refer to area percentages. (a) Initial compacted; (b) initial com-

pacted + annealed; (c) LTC; (d) HTA.
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Fig. 6. Inverse pole figures of halite deformed in axial extension: (a) LTC sample, measured by X-rays; (b) LTA sample, X-rays; (c) HTA

sample, X-rays; (d) HTA sample, measured by EBSP. Equal area projection, linear contours in mrd.
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diffraction patterns were not indexed or were

incorrectly indexed, producing apparent texture

weakening. Moreover, there was an orientational

bias of patterns that were indexed, leading to an

emphasis of the (100) component.

The new texture results for axial extension are

different than the extrusion experiments of Skrotzki

and Welch (1983) which show, in non-recrystallized

samples, only a (111) texture component. We attribute

this to differences in deformation conditions. Skrotzki

and Welch’s extrusion strains were very large, and the

applied strain-rates were many orders of magnitude

larger than in our experiments (1 s� 1 compared to

10� 5 s� 1). The large strains are likely to cause

heating that may be in excess of 70 jC. In addition,

there could be significant hardening of grains, such

that after only moderate deformation all slip systems

operate with similar ease. Both effects would promote

a (111) texture. Details of the local deformation

behavior are best evaluated at low strain rates and

intermediate strains, where grain boundaries still re-

main more or less intact.

A microstructural survey ascertained that, at the

time of the texture measurements, the material in the

new experiments had not undergone substantial re-

crystallization. Secondary recrystallization may have
occurred at a later stage. It has been observed by

many investigators that at large strains, and partic-

ularly in the presence of moisture, halite easily re-

crystallizes (e.g. Guillope and Poirier, 1979; Skrotzki

and Welch, 1983; Skrotzki et al., 1995; Trimby et

al., 2000). The previously mentioned extrusion

experiments of Skrotzki and Welch (1983), for

example, show the clear recrystallization feature of

a strong (001) (‘‘cube’’) texture. A (001) fiber

component was also observed in extruded galena

(PbS), which is isostructural with halite but deforms

preferentially by {100}h011i slip (Skrotzki et al.,

2000). In low temperature deformation of halite,

crystals with (001) oriented perpendicular to the

extension axis are plastically very weak because

they are optimally oriented for {110}h110i slip.

They have a Taylor factor that is more than five

times lower than grains with (111) or (110) parallel

to the extension axis (Wenk et al., 1989). These

highly deformed grains are likely to recrystallize.

Recrystallization nuclei will grow and then those

orientations will dominate the texture (Wenk et al.,

1997).

While dynamic (primary) recrystalization produces

a cube texture, we also have observed secondary

recrystallization in deformed samples stored for sev-

eral months after the deformation experiment. Anom-
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alous growth produced very large crystals, several

millimeters in size, and almost in perfect cube ori-

entation. However, at the time of texture measure-

ments, done before the microstructural characteriza-

tion shown in Fig. 2b and d, recrystallization was not

significant and we can be confident that the (001)

texture component observed in our samples is due to

plastic deformation rather than to recrystallization.
3. Modeling

Polycrystal plasticity models are comprised of two

basic parts: a set of crystal equations describing

properties and orientations and a set of equations that

link individual crystals together into a polycrystal.

The latter set provides the means to combine the

single crystal quantities to define the polycrystal

response on the basis of physically motivated assump-

tions regarding grain interactions. Here we focus on

the influence that these assumptions, as embodied by

different modeling approaches, have on the predicted

evolution of texture and microstructure. The single

crystal equations are the same for all modelling

approaches discussed and are presented in the next

section. This is followed by a brief summary of the

grain interaction equations associated with each of the

various modeling approaches.

3.1. Single crystal equations

Interest here is on the evolution of microstructure

and texture over large plastic deformation of crystals.

Consequently, we neglect the elastic response and

assume that all straining is plastic and occurs by

means of crystallographic slip. It is essential to

separate that part of the motion that is associated with

deformation from that part that represents the rotation,

as these are crucial to understanding the reorientation

features of the material’s structure. To that end, the

kinematics associated with the crystal motion can be

stated as

gradu ¼ L ¼ D þ W; ð1Þ

where u is the velocity, L is the velocity gradient, and

D (deformation rate) and W (spin) are its symmetric

and skew symmetric parts, respectively. Slip is a
volume-preserving motion, which is imposed by

requiring the divergence of velocity, or equivalently,

the trace of the deformation rate, to vanish

divðuÞ ¼ trðLÞ ¼ trðDÞ ¼ 0: ð2Þ

Under the assumption of negligible elastic strains,

the deformation rate is equal to the plastic deforma-

tion rate Dp achieved by a linear combination of the

slip on a slip systems

Dp ¼ DVp ¼
X

a

ċðaÞPðaÞ: ð3Þ

Here, P is the symmetric part of the dyadic

product, b�n, known as the Schmid tensor, ċ(a) is

the rate of shearing on the a system, and primes

denote the deviatoric part of the respective variable.

The skew part of the velocity gradient is a combina-

tion of the spin associated with slip and the spin of the

crystal lattice

W ¼ Ṙ* 	 R*T þ Wp; ð4Þ

where

Wp ¼
X

a

ċðaÞQðaÞ: ð5Þ

R*T is the rotation of the lattice frame with respect to

a reference, and Q is the skew part of the Schmid

tensor. With the slip system shearing rates known, Eq.

(4) provides an expression for evolving the lattice

orientation in each crystal.

The constitutive relations at single crystal level are

written assuming of rate-dependent behavior. This

behavior is approximated with a power law relation

between the resolved shear stress on the a system, s(a),
and the rate of shearing on that system, ċ(a),

sðaÞ ¼ ŝ
ċðaÞ

ċ0

� �m

; ð6Þ

where ŝ is the slip system strength, ċ0 is a reference

rate of shearing (set to 1 s�1 for every calculation in

this work), and m is the rate sensitivity parameter with

rate independent limit m! 0. At the crystal level, the

resolved shear stress, s(a), is the projection of crystal
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deviatoric Cauchy stress, sV, onto the slip system via

the Schmid tensor

sðaÞ ¼ PðaÞ : sV: ð7Þ

Inverting Eq. (6) and combining the result with

Eqs. (3) and (7) results in a relation between the

deformation rate and crystal deviatoric stress

DV¼
X

a

ċ0
ŝ

sðaÞ

ŝ

����
����
1
m
�1

PðaÞ � PðaÞ

" #
: sV¼ Mc : sV ð8Þ

where Mc is the crystal compliance, also known as the

secant modulus (Kocks et al., 1998).

Halite has cubic crystal structure, but, due to its

ionic character, exhibits several low symmetry slip

modes with different relative strengths. At low tem-

perature, the mode (i.e. a family of crystallographi-

cally equivalent slip systems) with lowest strength has

slip direction b = h11̄0i and normal n={110}. This

mode has six different slip systems (see Table 2).
Table 2

Slip systems of the different slip modes active in halite single

crystals

Slip mode Slip systems

n̄ b̄

{110}h11̄0i 1 1 0 1 � 1 0

� 1 1 0 1 1 0

1 0 1 1 0 � 1

1 0 � 1 1 0 1

0 1 1 0 1 � 1

0 1 � 1 0 1 1

{100}h011i 1 0 0 0 1 1

1 0 0 0 1 � 1

0 1 0 1 0 1

0 1 0 1 0 � 1

0 0 1 1 1 0

0 0 1 1 � 1 0

{111}h11̄0i 1 1 1 1 � 1 0

1 1 1 1 0 � 1

1 1 1 0 1 � 1

� 1 1 1 0 1 � 1

� 1 1 1 1 0 1

� 1 1 1 1 1 0

1 � 1 1 0 1 1

1 � 1 1 1 0 � 1

1 � 1 1 1 1 0

� 1 � 1 1 0 1 1

� 1 � 1 1 1 0 1

� 1 � 1 1 1 � 1 0
There are two stronger slip modes: one has slip

direction b = h011i and normal n={100} (six different

slip systems) while the other has slip direction

b = h11̄0i and normal n={111} (12 slip different

systems). Provided all the slip modes have the same

slip direction, they are usually referred using just their

slip plane. As Wenk et al. (1989) has pointed out, the

lower strength {110} mode alone does not endow a

crystal with sufficient independent slip systems to

accommodate an arbitrary deformation.

It is convenient in solving for the crystal stresses

for a known deformation rate to initiate the iteration

procedure from a vertex of the rate independent

single crystal yield surface. The vertices for halite

are given in the five dimensional deviatoric stress

space using the Lequeu convention (Lequeu et al.,

1987). Under this convention the five coordinates of

the space are

s1 ¼
ffiffiffi
2

p
ðrV22 � rV11Þ; s2 ¼

ffiffiffi
3

2

r
rV33;

s3 ¼
ffiffiffi
2

p
rV23; s4 ¼

ffiffiffi
2

p
rV13; s5 ¼

ffiffiffi
2

p
rV12: ð9Þ

In general, the coordinates of the vertices are

functions of the strengths of the different slip modes.

In the particular case of halite with ŝ{110} < ŝ{100} =
ŝ{111} there are 42 irreducible vertices whose coordi-

nates were computed using the algorithm of Tomé and

Kocks (1985) and are given in Table 3. This table

shows that the first two coordinates of every vertex are

function only of the strength of the weaker mode while

the last three coordinates depend only on the strength

of the stronger modes. This particular dependence

reflects that fact that any combination of the weaker

{110} slip systems is unable to accommodate shear

stress components in a system associated with the

crystal cubic axes.

The slip system strengths evolve with deforma-

tion. The evolution of ŝ follows a modified Voce

form

ŝ̇a ¼ H
ss � ŝa

ss � s0

	 
X
a

ċðaÞ
�� �� ð10Þ

in which H (initial hardening), s0 (initial strength) and
ss (saturation strength) are material parameters.



Table 3

Coordinates (Lequeu convention) of the 42 irreducible vertices of

a halite single crystal for s0
{110} < s0

{100} = s0
{111}. A=

ffiffiffi
2

p
s0
{110}, B =ffiffiffi

6
p

/3s0
{110}, C = s0

{100}

r1 r2 r3 r4 r5

1 �A �B 0 0 2C

2 �A �B 0 0 � 2C

3 �A �B 0 � 2C 0

4 �A �B 0 2C 0

5 �A �B C C C

6 �A �B �C C �C

7 �A �B �C �C C

8 �A �B C �C �C

9 A B C C C

10 A B �C C �C

11 A B �C �C C

12 A B C �C �C

13 �A �B � 2C 0 0

14 �A �B 2C 0 0

15 A �B 0 0 2C

16 A �B 0 0 � 2C

17 A �B 0 2C 0

18 A �B 0 � 2C 0

19 A �B C C C

20 A �B �C C �C

21 A �B �C �C C

22 A �B C �C �C

23 �A B C C C

24 �A B �C C �C

25 �A B �C �C C

26 �A B C �C �C

27 A �B 2C 0 0

28 A �B � 2C 0 0

29 0 � 2B 0 0 2C

30 0 � 2B 0 0 � 2C

31 0 � 2B 0 � 2C 0

32 0 � 2B 0 2C 0

33 0 � 2B C C C

34 0 � 2B �C C �C

35 0 � 2B �C �C C

36 0 � 2B C �C �C

37 0 2B C C C

38 0 2B �C C �C

39 0 2B �C �C C

40 0 2B C �C �C

41 0 � 2B � 2C 0 0

42 0 � 2B 2C 0 0
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3.2. Crystal interaction equations

Crystals within an aggregate collectively bear the

loads applied to them and exhibit deformation to

differing degrees. Generally, the greater the degree

of crystal anisotropy or the larger the differences in
strength between crystals, the greater the inhomoge-

neity of the deformation both within and among the

crystals. A difficult task in constructing a model for

polycrystals is to ascertain how to partition the net

(macroscopic) straining among the participating crys-

tals of an aggregate. Numerous models have been

proposed; here we examine only three.

3.2.1. Extended Taylor assumption

Following the Taylor’s assumption that all crystals

exhibit the same strain (Taylor, 1938), the velocity

gradient in every crystal is equated to the macroscopic

velocity gradient:

h ¼ hLi ¼ L; ð11Þ

where h is the macroscopic velocity gradient and the

MacCaulley brackets indicate the ensemble average.

The average of the crystal stresses defines the macro-

scopic stress:

SV¼ hsVi: ð12Þ

Because every crystal must deform in an identical

manner to the macroscopic average (Fig. 7, bottom

left), each crystal must be capable of accommodating

the average deformation regardless of its orientation.

For highly anisotropic crystals, this implies that stron-

ger slip systems will be more active than is actually

the case.

3.2.2. Viscoplastic self-consistent

Using the VPSC approach, the average deformation

rate within a crystal can be determined by considering

the problem an inclusion embedded in an homoge-

neous effective medium (HEM) and determining the

deviation in the crystal’s stress and deformation rate

from the interaction equation obtained from the

Eshelby inclusion in a viscoplastic medium:

D� D̄ ¼ �M̃ :

�
sV�

X V
�
; ð13Þ

where

M̃ ¼ ðI� SÞ�1
: S : M; ð14Þ

is the interaction tensor, S is the viscoplastic Eshelby

tensor, and M is the tangent compliance of the HEM,



Fig. 7. Conceptual depiction of the modeling assumptions made with the Taylor (FC), self-consistent (VPSC), and finite element (HEP) models.

A polycrystal is deformed as indicated by the arrows. Lattice orientation in each crystal is indicated by gray shades. Under the FC assumption,

all crystals undergo the same average deformation regardless of their orientations and of their neighborhood. This independent behavior is

shown schematically by the separation of the individual crystals. Under the VPSC assumption, crystals act as ellipsoids in an effective medium

having uniform properties. The crystals deform differently based on the lattice orientation. All crystal with the same lattice orientation exhibit

the same deformation. Under the HEP assumption, crystals deform differently but maintain compatibility. The deviation in deformation from the

average depends both on lattice orientation and on the lattice orientations of neighboring crystals.

R.A. Lebensohn et al. / Tectonophysics 370 (2003) 287–311 299
which is not known in advance, but rather must be

determined by satisfying:

D̄ ¼ hDi; ð15Þ

and

X V¼ hsVi: ð16Þ

Unlike the Taylor hypothesis, the straining in every

crystal may be different than the macroscopic average.

The interaction equation introduces the influence of

neighboring crystals in an average sense over the

complete polycrystal. Because the interaction equa-

tion is averaged over all crystals, the deviation in

deformation rate from the average depends only on

the crystal’s own orientation and the overall texture

(Fig. 7, bottom center).
3.2.3. Hybrid element polycrystal

Another possibility for determining the response of

an aggregate of crystals is to resolve individual

crystals with finite elements and solve for the velocity

field based on the field equations using a finite

element formulation. The hybrid finite element for-

mulation of Beaudoin et al. (1995) is used for the

solution procedure here. Equations for linear mo-

mentum balance, mass conservation and the crystal

constitutive response are solved simultaneously to

determine the motion and stress distribution in an

aggregate of crystals. Hybrid formulations have two

features that distinguish them from the more com-

monly employed displacement or velocity based for-

mulations (Zienkiewicz and Taylor, 2000). First, there

is mixed interpolation, meaning that the trial functions

are defined for the motion and the stress. Second,

residuals are formed using domain partitioning, which
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in this case applies to partitioning of the body as

individual crystals.

Beginning with balance of linear momentum, and

neglecting body forces and inertia, a residual is

formed on the tractions over all the crystal surfaces.

After integration by parts, application of the Cauchy

formula, and elimination of the divS over the volume

of elements by the choice of appropriate stress inter-

polation, this residual becomes

X
e

Z
Xe

tr ðsV� pIÞ 	 gradU½ 
dX �
Z

Ct

U 	 tdC

" #
¼ 0;

ð17Þ

where Xe are element volumes, SVis the deviatoric

Cauchy stress, p is the pressure, I is the second order

identity, t is the applied surface traction, Ct is the

portion of element surface with applied traction, tr is

the trace operator, and U are vector weights. The

second residual is from conservation of mass for an

incompressible motion, as given in Eq. (2). In weak

form with scalar weight u, this becomes

Z
X

#trðDÞdX ¼ 0: ð18Þ

The crystal response shown in Eq. (8) provides the

third residual required to obtain a solution of the

boundary-value problem. This residual can be written

with vector weights, W, as

Z
X

W 	 ðMc 	 sVÞdX ¼
Z

Xe

W 	 DVdX: ð19Þ

The constraints of Eqs. (17), (18) and (19) are

sufficient to obtain a velocity solution to the boun-

dary-value problem. The numerical solution begins by

introducing trial functions for the velocity, pressure,

and stress as

u ¼ ½Nu
fUg; p ¼ ½Np
fPg; st ¼ ½Nr
fbg: ð20Þ

Here, Nu, Nr and Nr are the interpolation functions for

the velocity, pressure and deviatoric stress, respec-

tively. U, P, and b are the corresponding nodal values.

The velocity trial functions provide continuous inter-

polation using trilinear functions. The pressure trial
functions are constant over elements and discontinu-

ous. The stress trial functions are piecewise discon-

tinuous and linear in the natural coordinates of the

element, which ensures the invariant property of the

element. The stress trial functions are chosen to satisfy

div sV = 0 a priori at the element level. The stress will

be divergence-free under the sum of the divergence-

free deviatoric stress and the constant (and hence

divergence-free) pressure. The stress now acts as the

primary variable with the velocity serving the function

of Lagrange multipliers. The hybrid formulation has

proven to be very effective in aiding convergence in

simulations where the properties change abruptly, as is

the case at the interfaces of grains (elements). A

simple Euler integration is employed to advance the

geometry and microstructural state over a time incre-

ment once a converged solution is found.

In the present one-element–one-grain implementa-

tion of the HEP model, average values of the defor-

mation rate and the stress in each crystal are calculated

by interpolation at the centroid of each element. As

with the VPSC model, the deformation rate in each

crystal varies from the macroscopic average. Unlike

the VPSC model, the deviation of the strain rate in a

crystal depends on its local neighborhood. The defor-

mation rate exhibited by a crystal thus depends not

only on its own orientation and the texture as a whole,

but also on that of its immediate neighbors in the HEP

(Fig. 7, bottom right). Thus, two crystals within an

aggregate having virtually identical orientations can

experience quite different deformation histories.
4. Simulations

Simulations were performed to mimic the exten-

sion experiments using the three modeling approaches

(Taylor, VPSC, and HEP). Identical single crystal slip

system parameters were employed in all simulations

so that the differences between simulations were a

result of the grain interaction assumptions associated

with the three approaches. Table 4 shows the initial

threshold strengths and the hardening parameters (see

also Eq. (10)) used to simulate the low and high

temperature deformation experiments. The initial

threshold strengths were taken from the Carter and

Heard (1970) experiments on single crystals. The

hardening parameters for 20 and 100 jC were ad-



Table 4

Initial threshold strengths, hardening parameters and anisotropy factors used to simulate the 20 and 100 jC halite deformation experiments

T [jC] s0
{110} [MPa] s0

{100} = s0
{111}

[MPa]

H0 [MPa] ss
{110} [MPa] ss

{100} = ss
{111}

[MPa]

Anisotropy factor

(s0
{110}/s0

{111})

20 4.8 19.2 105 9.1 36.4 4.0

100 3.8 11.4 69.5 6.8 20.5 3.0
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justed to obtain the best possible match between the

HEP predictions and the experimental LTA and HTA

stress–strain curves, respectively. For halite, the slip

systems strengths differ appreciably for the various

slip systems. In the simulations reported here, the

stronger slip systems (i.e. the {100} and {111}

systems) are four and three times stronger than the

weaker {110} system for 20 and 100 jC, respectively.
The saturation values for the slip system strengths

were chosen so that the ratio between the critical

stresses of weaker and stronger slip systems remained

constant as the deformations proceeded (i.e. homotetic

hardening). For the rate-sensitivity of the slip systems

strength, a value of m = 0.1 was specified, as deter-

mined on single crystals by Carter and Heard (1970)

and confirmed on polycrystals by Skrotzki et al.

(1996).

A numerically built collection of 4096 orientations

were chosen randomly from a uniform distribution

with no symmetry constraint. The absence of an initial

(nonuniform) texture is an important issue, given our

interest in predictions for relatively low strains. In

fact, after distributing the orientations into 5j ODF

cells, filtering the discrete ODF with 10j Gaussians

and calculating inverse pole figures using the BEAR-

TEX package (Wenk et al., 1998), the orientation

density of the initial inverse pole figure varied

between 0.87 and 1.16 mrd (multiples of a random

distribution).

The simulations were carried out imposing uniaxial

tension along axis x3. For the Taylor and VPSC

calculations, boundary conditions given by D̄33 = 1

for the strain rate in the tensile direction and

SV11 =SV22 = 0 for the transverse stress components were

assumed. Shear tractions were 0 on all surfaces. For

the finite element simulations, the upper surface of a

prismatic sample of lengths L1 = L2 and L3 = 2L1 was

submitted to a longitudinal velocity u3 = D̄33L3 while

u3 = 0 was imposed on the lower surface. On the

lateral surface, the normal tractions were 0. On all

surfaces, shear tractions arising from friction were
neglected. These boundary conditions are consistent

with conditions of deformation and stress imposed on

the Taylor and VPSC simulations. The HEP sample

was regularly partitioned in each direction using a

16� 16� 16 mesh (Fig. 8a). Each one of the initial

4096 orientations was randomly assigned to an ele-

ment. In the Taylor and VPSC cases, the same 4096

orientations were used as initial texture but, unlike the

HEP model, the Taylor and VPSC models do not

utilize any information about neighborhood between

grains.

This plastic anisotropy of halite single crystals is a

challenge for the HEP model in several aspects. The

most severe is associated with distortion of the ele-

ment crystals with deformation. For each deformation

increment, the coordinates of each node should be

updated according to the corresponding local veloc-

ities. However, for highly anisotropic materials, the

deformations vary strongly from one element to

another. Within elements, there also exist spatial

variations in the velocity gradient dictated in form

by the interpolation functions and in magnitude by the

differences in nodal velocities. Strong intra-element

variations in velocity gradient lead to non-uniform

element distortions that can be monitored with the

Jacobian of the mapping of the element coordinates.

As a simulation proceeds, some elements in the mesh

can become heavily distorted, leading to deterioration

of their numerical accuracy after relatively small

amounts (a few percents) of overall strain of the

polycrystal. One possible strategy to overcome this

problem is to perform periodic remeshing operations.

However, it is evident that remeshing can disrupt the

one-to-one correspondence between element and

grain. Consequently, to avoid either heavy mesh

distortion or remeshing, the nodal coordinates were

updated using a velocity field corresponding to a

macroscopically homogeneous deformation. In the

case of an initially untextured material pulled in

uniaxial tension along axis x3 of a prismatic sample

of lengths L1, L2 and L3, an isotropic velocity field is



Fig. 8. Initial and deformed polycrystal after 30% strain, simulated with HEP model. Gray shades indicate levels of longitudinal strain-rate

component.
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adequate for this purpose and can be calculated at

each deformation step ( j) as:

u
ðjÞ
i ðx̄Þ ¼ xiL̇

ðjÞ
i

L
ðjÞ
i

ð21Þ

where L̇3
( j) can be updated as:

L̇
ðjÞ
3 ¼ L̇

ðj�1Þ
3 L

ðjÞ
3

L
ðj�1Þ
3

ð22Þ

and, if L1 = L2:

L̇
ðjÞ
1 ¼ L̇

ðjÞ
2 ¼ � L

ðjÞ
1 L̇

ðjÞ
3

2L
ðjÞ
3

: ð23Þ

Updating the nodal coordinates in this way gives a

final polycrystal consisting of regular elongated pris-

matic grains, as shown in Fig. 8b. However, even

applying this simplified scheme for grain (element)

shape updating, we can still keep track of the actual

grain shape that would result from using the local

velocity gradients for that purpose. This allows us to

use HEP to predict morphologic texture evolution (i.e.

distributions of grain’s principal axis orientations and

aspect ratios), as discussed below. This method for
repairing distorted elements was used in the study of

texture evolution in HCP polycrystals (Dawson et al.,

1994). In that study, little difference was observed in

computed textures between results obtained from

simulations with and without mesh repair up to strain

levels of about 10%.
5. Results

5.1. Comparisons between models

In what follows, we will compare the results ob-

tained with VPSC and HEP formulation, (and also the

Taylor model) for an aggregate represented by an

identical set of initial orientations. However, it is worth

emphasizing here that the microstructures considered

under the assumptions underlying each formulation are

indeed different. While in the HEP case we obtain the

behavior of each grain surrounded by particular neigh-

bors, in the VPSC case the deformation associated with

each orientation represents an average of over grains

with this orientation and all possible environments.

Fig. 9 shows the predicted loading curves in

comparison to the experimental data for 20 (LTA



Fig. 9. Measured stress–strain points for LTA and HTA experiments and predicted loading curves at 20 and 100 jC using Taylor (FC), VPSC

and HEP models.
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case) and 100 jC (HTA case) test. Although the

experiments conclude at around 15% strain, the sim-

ulations continue up to 30% strain. For the single set

of input parameters, the Taylor FC model predicts the

highest stress level throughout the test; the VPSC

curve is substantially below the Taylor result; the

curve predicted by HEP lies in-between, closer to

Taylor than to the VPSC. The fact that HEP curves lie

between Taylor and VPSC curves, but closer to

Taylor, suggests that, although equilibrium is satisfied

in the weak form as the chosen constraint, the fulfill-

ment of spatial compatibility remains a strong con-

straint in the HEP model. This trend is systematically

observed when other indicators are analyzed. In what

follows, we will show some of these indicators for the

100 jC case.

Materials with strongly anisotropic single crystal

behavior are expected to demonstrate a high level of

strain heterogeneity over an aggregate of crystals. We

can compare the heterogeneity predicted by the three

modeling approaches by examining the distributions

in strain rate components over the simulated aggre-

gates of crystals. In Fig. 10 the strain rate component

from the HEP and VPSC simulations are cross-plotted

at the initial stage of each simulation. Fig. 10a shows
the major (extensional) diagonal component (the

magnitudes of the two minor components are negative

and approximately half of the major component) and

Fig. 10b–d shows the off-diagonal components. The

macroscopic prescribed values are indicated with

large dotted symbols. If both models predicted the

same local behavior the points would form a straight

line at 45j. The horizontal and vertical spans reflect

the local deviations from the macrocopic values for

the HEP and the VPSC models, respectively.

The deviations predicted by the VPSC model are

much larger than the ones obtained with the HEP

formulation (i.e. in all cases, the vertical dispersions

are higher than the horizontal ones). The spreads show

a positive slope, but no strong correlation. In case of

the off-diagonal components, for instance, the distri-

bution is mainly located in the first and third quadrant

rather than in the second and fourth. These slightly

positive slopes can be explained in the following

terms: while in the VPSC case the local strain-rate

is only dictated by the orientation of each grain, in the

HEP case the orientation but also the neighborhoods

of a grain are relevant to determine its local behavior.

This becomes even more evident when plotting the

component along the tensile direction of the local



Fig. 10. Grain-by-grain comparison of (a) diagonal and (b–d) off-diagonal strain-rate components, predicted at the initial stage of each

simulation, in the HTA case, with HEP (horizontal axes) and VPSC (vertical axes). Big symbols: applied macroscopic strain-rate components.
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strain-rate (D33) as a function of the Taylor factor of

each orientation, defined as (Mecking et al., 1996):

M ¼ sV: D̄

sð110Þ0

ð24Þ

where sVis the deviatoric stress in the grain when it

undergoes the macroscopically applied strain-rate D̄
and s0
(110) is used as a reference hardness. Fig. 11

shows such plots for Taylor, VPSC and HEP at the

initial stage of each simulation. In the Taylor case,

the points obviously lie on a horizontal line, indi-

cating that the predicted strain rates are independent

of the orientation of the grains. In contrast, VPSC

shows a strong dependence of the local behavior

with the orientation, i.e. favorable orientations (with



Fig. 11. Tensile component of the local strain-rate as a function of the Taylor factor for Taylor, VPSC and HEP models at the initial stage of each

simulation in the HTA case. Straight line: linear regression of HEP points.
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a low Taylor factor) deform more than twice as fast

as the average. In fact, the VPSC points form a

narrow cloud, i.e. grains with the same Taylor factor

may undergo slightly different deformation. This

small variance is a consequence of our choice of

a single parameter like the Taylor factor to represent

a crystal orientation relative to the tensile axis,

which strictly depends on two angles. On the other

hand, the HEP results differ substantially from both

Taylor and VPSC: the points form a band that

shows an important dispersion for orientations of

identical Taylor factor and gives evidence of a

strong influence of the local neighborhood of a

grain on its behavior. When a linear fit is performed

on the HEP data, a regression line with a slight

negative slope is obtained. This means that, in the

HEP case, the grain orientation, among other fac-

tors, still plays a role in determining the local

deformation. The substantial differences between

the VPSC and the HEP results at local level,

displayed in Figs. 10 and 11, indicate that two

models predict very different behaviors for the

highly anisotropic halite polycrystals.

Two additional indicators of the differences be-

tween the modeling approaches are the relative activ-
ity of the slip modes and the average number of active

slip systems per grain. The relative activity of slip

mode (m) is defined as:

actðmÞ ¼

*XSðmÞ
a¼1

ċðaÞ

XS
a¼1

ċðaÞ

+
ð25Þ

where the summation in the denominator runs over

the whole set of active slip systems while the one in

the numerator runs over the slip systems of mode

(m). To compute the average number of active slip

systems per grain, a given slip system is considered

to be active if its strain rate exceeds a threshold

shear-rate of 20% of the most active slip system.

Fig. 12a and b shows the plots of the relative

activity and numbers of active slip system over

the course of the simulated deformation, respec-

tively. In the Taylor case, the activity of the hard

modes is higher than the activity of the soft {110}

slip. This result (already discussed by Wenk et al.,

1989) is a direct consequence of the Taylor assump-



Fig. 12. (a) Relative activity of slip modes and (b) average number of active slip systems per grain predicted with Taylor, VPSC and HEP.
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tion: if an arbitrary strain is imposed on a crystal,

five independent systems must be activated (the

actual number may be higher). Therefore, since

there are only two independent variants of the

weaker {110} systems, the stronger systems operate

profusely. Correspondingly, the average number of

active slip systems assumes values between 5.5 and

6. In the VPSC case the weaker {110} system

dominates, with only a minor contribution from

the stronger systems. In most of the grains, the

strain has been accommodated by weaker systems

only, leading to high dispersion of the local strain-

rate components. Consequently, in the VPSC case,

the predicted average number of active slip systems

is lower than the Taylor case (approximately 4). The

HEP model predicts an intermediate behavior: it

gives equal activity for weaker and stronger slip

systems at the first deformation step. Then, as

deformation proceeds, activity of the stronger sys-

tems dominates over that of the weaker systems.

This is a consequence of the crystal lattice rotating

into harder orientations and to proportionally greater
hardening of the initially weaker {110} systems as

deformation proceeds. The average number of active

slip systems also is intermediate, closer to Taylor than

to VPSC.

5.2. Comparisons to experimental crystallographic

textures

Figs. 13 and 14 show inverse pole figures (for

10%, 15% and 30% deformation) obtained with the

Taylor, VPSC and HEP models for the 100 and 20

jC cases, respectively. Comparing the simulated

15% strain textures with the experimental textures

shown in Fig. 6b (LTA) and c (HTA), we observe

that:

(a) At both temperatures, the Taylor model shows

at 30% strain a concentration at (111) with a shoul-

der towards (001) which is the same as the first

application of the Taylor theory to halite (Siemes,

1974) and the simulations of Wenk et al. (1989) (see

Fig. 1), but contradictory with the experimental

results.



Fig. 14. Inverse pole figures illustrating simulated texture development in halite for 20 jC conditions after 10%, 15% and 30% strain in axial

extension obtained with Taylor, VPSC and HEP models. Equal area projection, linear scale contours.

Fig. 13. Inverse pole figures illustrating simulated texture development in halite for 100 jC conditions after 10%, 15% and 30% strain in axial

extension obtained with Taylor, VPSC and HEP models. Equal area projection, linear scale contours.
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(b) Except for the Taylor model, all the other ap-

proaches predict the experimentally observed bimodal

(111)–(001) peak distribution, with a dominant (111)

component and a secondary component at (001). The

(001) component is much stronger for VPSC than for

the HEP. Also, the VPSC approach exhibits the two

components more distinctly, whereas the HEP displays

a characteristic shoulder from (111) towards (001), as

observed in experiments.

(c) The general patterns of the VPSC and HEP

simulations are similar to earlier VPSC simulations

by Wenk et al. (1989) for conditions with significant

hardening, but are different from the earlier results for

the case with no hardening, shown in Fig. 1.

(d) At 15% strain, the predicted peak intensities

are similar to the measured ones, yet a bit sharper

in the experimental textures. This contradicts most

of our previous experience about comparisons

between theoretical and measured textures. In other

materials, predicted textures usually are sharper than

corresponding measured textures (Kocks et al.,

1998).

(e) At 15% strain, the predicted textures at low

temperature and at high temperature reach the same

peak values. This indicates that both models, HEP

and VPSC, are rather insensitive to moderate varia-

tions of the single crystal anisotropy and, therefore,

that both models fail to predict the measured slight

decrease of peak intensities with higher temperature.

The reason for this may be that, after all, some

amount of recrystallization may have occurred in

the experiment, which softened the texture intensity

at high temperature. This cannot be predicted without

including the effects of recrystallization (which is not

currently part of any of the approaches used in this

work).

(f) The texture evolution is strongest for the Taylor

model, weakest for HEP, and intermediate for VPSC.

A reason for this is that both Taylor and VPSC have

associated unique reorientation velocities. By con-

trast, two crystals in the HEP may have different

reorientation directions even though they have the

same orientation. This gives rise to a variability in the

deformation rate predicted with FEM, both in the

direction of straining as well as in its magnitude.

This variability is a fairly random deviation from

the mean which, in turn, gives rise to slower rates

of texture evolution.
6. Discussion

6.1. Differences between predicted textures

The Taylor model predicts a texture with a single

maximum in (111) that is in disagreement with experi-

ments. As already pointed out by Wenk et al. (1989),

crystals with their h111i direction aligned with the

tensile direction are hard and stable orientations. In

other words, under Taylor assumptions almost every

grain, even those in soft regions near (001), rotates

toward this orientation and no further rotation takes

place thereafter. In the VPSC results, and less mark-

edly in those of the HEP, a bimodal texture, with a

(111) and a (100) component, is formed. In both cases

the (111) maximum is stronger than the (100) one,

which is in fair agreement with the X-ray textures.

The fundamental region of the orientation space for

tensile deformation can be divided into two domains.

Each domain contains orientations that rotate towards

the stable orientations (111) and (001), respectively.

The precise limit between both domains depends on

the difference in critical shear strengths between the

stronger and weaker slip systems. The (111) domain

increases in size if the difference between the strength

of the weaker and the stronger systems decreases and

the behavior predicted by the polycrystal model is

closer to compatibility. Consequently, the (001)

domain increases if {110} is predominantly active

and the model is closer to the lower bound. The

Taylor model (full compatibility) is an extreme case

in which the (111) domain covers the whole orienta-

tion space.

This argument suggests that the use of anisotropic

hardening laws (i.e. those that change the relative

strengths of the weaker and stronger systems with

deformation) can change the relative size of both

domains, and thus the textures, as deformation

proceeds.

6.2. Weakening of theoretical textures

As discussed in the preceding section, the predicted

textures are slightly weaker than the experimental

textures, in contradiction with our experience in most

other materials. A possible explanation for this anom-

alous behavior of halite is that in the soft {110} slip

mode, there is, for each individual system (110) [11̄0],
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an equivalent system (11̄0) [110] (slip plane and slip

direction exchanged) (Kocks et al., 1998). Both have

exactly the same Schmid factor and therefore the same

activity. The shears on these systems compensate each

other’s spins and no texture should develop due to this

pair of slip systems, which is one of the reasons why

texture evolution is rather weak for the VPSC where

{110} is dominantly active (see relative activities, Fig.

12). Therefore, grain rotations are mostly due to

activation of secondary systems such as {111} and
Fig. 15. Aspect ratio distribution after 15% strain predicted with (a)

VPSC and (b) HEP models, for the 100 jC case.
{100}. There is also a contribution to grain reorienta-

tion of rotations associated with changes in grain

shape but, for the moderate strains considered in this

work, these are small compared with the lattice

rotations due to slip activity.

6.3. Comparisons to experimental morphologic

textures

Textural data are not the only criterion to com-

pare experiments and simulations. It was noted that

predicted strain rates for the three models considered

in this paper vary greatly from uniformity in the

case of Taylor, a very large orientation dependence

in the case of VPSC, and an intermediate pattern for

HEP (Fig. 10). Since in the models strain rates are

known for each grain and the whole deformation

process, we can integrate to obtain the grain shape

distribution at any point in the deformation history.

Fig. 15 shows a histogram of aspect ratios for VPSC

and HEP simulations after 15% strain, for the 100

jC case. This can be compared directly with the

experimental data illustrated in Fig. 5. We note that

VPSC displays a similar spread as that observed,

while predicted grain shapes for HEP are more

uniform. It should be emphasized that in the simu-

lations spherical grains were assumed as starting

morphology and aspect ratios are for longest versus

shortest axis, while in the experiment there was an

initial shape distribution and aspect ratios were

measured in a section, relative to macroscopic strain

coordinates. This would add more spread to the

simulated distributions.
7. Conclusions

Even though halite is an extremely simple ionic

structure with well-defined slip systems, the mechan-

ical behavior of the polycrystal is rather complicated.

Microstructures indicate that deformation is quite

heterogeneous, i.e. differently oriented grains deform

by different amounts. Thus the classical Taylor

theory is not well suited to such a system. We have

modeled the deformation of polycrystalline halite

with self-consistent (VPSC) and finite element (HEP)

approaches, starting from the same initial set of ori-

entations. In both cases, we obtained an average
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deformation for each orientation, but the amount and

mode of strain varies from orientation to orientation. In

the HEP model, a grain is constrained to have compat-

ibility with neighbors; in the VPSC model, an orienta-

tion is constrained only by the average medium. The

strain distribution plots (Figs. 10 and 15) point to

greater variation that can be captured with finite

element simulations only if greater resolution is avail-

able, with intragranular heterogeneity. Another large

difference is the activity of slip systems. The VPSC

formulation concentrates most of the deformation on

the weaker system, while in HEP is it more evenly

distributed among all systems.

The new polycrystal plasticity simulations of halite

highlight significant differences between models that

have been routinely applied. The HEP simulations

help us to analyze differences between equilibrium

and compatibility models. In comparing the VPSC

and HEP approaches, the predicted texture develop-

ment is similar, and therefore not a good criterion to

discriminate between them. Predicted microstructures

show greater differences, and at least qualitatively, the

similar and low aspect ratios observed in the experi-

ments are more compatible with the VPSC predic-

tions. While the VPSC spread looks better in

comparison to the data (Fig. 3), that is somewhat

misleading. The experiments show very little increase

in volume fraction of grains with aspect ratio above

2.5. The fact that VPSC has a large fraction above 2.5

probably relates back to the high D33 values in Fig.

10a and is not very realistic. The HEP model, on the

other hand, seems to constrain the deformation too

much, probably due to the simple representations of

the crystals. We have illustrated that, with a model

like HEP, which captures more of the physics of

polycrystal deformation by imposing equilibrium

and compatibility at the local scale, the evolution of

texture as well as of microstructure, are adequately

predicted. This comes at the cost of added complexity.

Also the HEP formulation and the microstructure

considered here are still highly idealized. Microstruc-

tural observations on highly deformed plastically

anisotropic minerals and rocks indicate pervasive

heterogeneous deformation within a crystal. We con-

sider this study as an intermediate step to advance to a

more realistic polycrystal in which domains within a

crystal can deform differently. Finite element simu-

lations in which many elements cover a crystal have
been done for cubic metals with a single slip system

(Mika and Dawson, 1999), and it is planned to extend

them to halite and at that stage explore local differ-

ences between grains in more detail. In the future

much attention must be paid to local features such as

grain shape, slip system activity, dislocation distribu-

tions to determine the quality of a model and estimate

the extent to which it is applicable.
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